APPRENTISSAGE DE LA CONSTRUCTION DES BISSECTRICES DES ANGLES D'UN TRIANGLE À L'AIDE DE LA RÈGLE ET DU COMPAS, EN S'AIDANT DU LOGICIEL GEOGEBRA EN CLASSE DE 5^E AU CAMEROUN

NGOMPE* KARELL

Résumé | Cet article a pour objectif de présenter une recherche dont le but est d'élaborer, expérimenter et valider des situations d'enseignement/apprentissage pour la construction des bissectrices des angles. L'apprentissage se fera avec les outils tels que la règle et le compas, ceci en s'aidant du logiciel Geogebra; le but étant de faire évoluer les rapports des élèves en classe de 5° avec ces outils. Comme cadre théorique, nous avons donc choisi la théorie des situations didactiques et l'approche instrumentale.

Mots clés: géométrie, bissectrice, outils, construction géométrique, genèse instrumentale

Abstract | This article aims to conduct research focused on developing, experiencing with, and validating teaching/learning situations for the construction of angle bisectors. Learning will take place using tools such as a ruler and compass, with the assistance of the Geogebra software; the goal is to enhance the engagement of 5° students with these tools. The theorical framework includes the Theory of Didactic Situations and the Instrumental approach.

Keywords: Geometry, bisector, tools, geometric construction, instrumental genesis

I. INTRODUCTION

Cette étude est menée au Cameroun, dans la ville de Yaoundé. Elle se situe dans le cadre de l'enseignement-apprentissage des mathématiques au secondaire, plus précisément dans le sous-système francophone. Depuis près d'une décennie, le système éducatif camerounais a adopté une approche pédagogique par les compétences (APC) qui met l'apprenant au centre du processus enseignementapprentissage. Elle préconise que l'apprenant construise ses connaissances de lui-même, avec l'aide de ses pairs, sous la supervision d'un enseignant. A la fin d'un enseignement, les élèves doivent être compétents, c'est-à-dire être capables d'exploiter l'instrumentalité d'un savoir (Bennaceur, 2009), autrement dit, d'utiliser une connaissance pour pouvoir résoudre un problème concret.

Les rapports entre la géométrie et les élèves débutent dès la maternelle. En effet, dès le bas âge, on apprend aux enfants à reconnaître les formes géométriques simples que sont le carré, le cercle, le rectangle et le triangle. Au primaire, la manipulation de l'outil mathématique est introduite; à cet effet, Voltolini affirme que «l'outil compas est utilisé dans un premier temps pour tracer la ligne cercle (programme de CE2), puis dans un deuxième temps pour comparer ou reporter une longueur (programme de CM1) » (2014, p. 26).

En observant le programme de géométrie des classes de 6° et 5° du système éducatif camerounais, nous constatons qu'il y'a plusieurs chapitres qui reviennent à savoir : le cercle, les angles, les symétries, le repérage et les triangles. Le chapitre sur le triangle est le seul parmi ces derniers qui prévoit l'étude d'une même notion, celle des droites particulières (médiatrices, médianes, hauteurs et bissectrices). En effet, en 6°, on apprend aux élèves à construire les bissectrices d'un triangle à l'aide du rapporteur et

^{*} École Normale Supérieure de Yaoundé – Cameroun – karellngompe@gmail.com

de la règle; en classe de 5°, la méthode de construction devrait être différente pour éviter chez les élèves une sensation de « déjà vu » (Pressiat et Combier, 2001).

Dans le but d'améliorer les apprentissages de façon permanente, le Ministre des Enseignements Secondaires préconise l'introduction des Technologies de l'Information et de la Communication dans les enseignements. C'est d'ailleurs dans cette lancée que l'année scolaire 2023-2024 a été mise sous le thème : « Digitalisation et pratique de classe pour la modernisation des enseignements et apprentissages au Ministère des Enseignements Secondaires. ». En mathématiques, l'utilisation des TIC pourrait impacter positivement sur la motivation des élèves. A cet effet, Mastafi (2020) écrit : « les logiciels multimédias se concentrent sur des unités d'enseignement spécifiques et en intégrant du mouvement dynamique, du son et du graphisme, ils aident les élèves dans la construction de leurs apprentissages. » (p. 61-62).

Dans ce travail, nous allons explorer l'utilisation de plusieurs outils matériel et numérique à savoir : la règle, le compas et le logiciel Geogebra, pour apprendre à construire les bissectrices d'un triangle en classe de 5^e.

II. CONSTATS ET PROBLÉMATIQUE

Les stages académiques que j'ai effectués durant ma formation à l'Ecole Normale Supérieure de Yaoundé au lycée bilingue d'Etoug-Ebé et au lycée de la Cité Verte m'ont permis de faire plusieurs constats concernant notre thématique, entre-autres :

- Les enseignants de mathématiques des classes de 6e et 5e n'arrivent pas à expliquer clairement les notions géométriques en utilisant le vocabulaire adéquat. Certains enseignants, pour parvenir à leur fin utilisent un vocabulaire peu approprié, ce qui impacte négativement sur les apprentissages des élèves. D'autres font des schémas à main levée pour essayer de faire passer le message qu'ils veulent transmettre ; et parce qu'ils le font tout le temps en cours de géométrie, les élèves ont du mal à faire la différence entre un géomètre et un dessinateur (Pressiat et Combier, 2001).
- Les enseignants de mathématiques des classes de 6e et 5e font beaucoup de schémas à main levée et utilisent très peu le matériel de géométrie. Lorsqu'ils l'utilisent, les élèvent ont l'impression qu'il s'agit d'une illustration autre que la notion dispensée. Ce qui rend l'instrument externe à la formation des connaissances géométriques des élèves (Ourahay, 1991).
- Les enseignants de mathématiques des classes de 5e, pour tracer les bissectrices, divisent la mesure de l'angle donné en deux, et à l'aide du rapporteur et de la règle trouvent la bissectrice. Le fait de toujours passer par la mesure pour résoudre un problème géométrique est un obstacle à l'apprentissage des élèves (Serigado, 2022).

Ces constats montrent qu'il y a un véritable problème dans l'apprentissage de la construction des figures géométriques, en particulier les bissectrices d'un triangle par les élèves. Cette thématique pose donc le problème de la difficulté de l'élève à pouvoir utiliser la règle et le compas pour pouvoir construire les figures géométriques, en particulier les bissectrices d'un triangle.

Nous aurons pour ce travail une question principale de recherche : Comment est-ce que le logiciel Geogebra peut améliorer l'apprentissage de la construction des bissectrices d'un triangle chez les élèves ?

Comme questions secondaires, nous avons :

- Comment à partir des propriétés des bissectrices, la règle et le compas peuvent servir d'artefacts pour la construction des bissectrices ?
- Comment l'utilisation de Geogebra permet de visualiser la construction des bissectrices ?
- Comment articuler l'utilisation des outils (règle et compas) et la séquence de construction de la bissectrice avec Geogebra ?

Cette étude a pour objectif général de construire un dispositif d'apprentissage permettant aux élèves de mobiliser les propriétés de géométrie pour construire les bissectrices d'un triangle en utilisant les outils de géométrie tels que la règle et le compas.

Pour cet objectif, nous aurons plusieurs objectifs secondaires : faire ressortir le rôle du compas et de la règle dans la construction de la bissectrice d'un triangle, ainsi que les différentes étapes de construction des bissectrices d'un triangle à l'aide de Geogebra.

III. INTÉRETS ET DÉLIMITATION DE CETTE ÉTUDE

Pour cette étude, nous allons donner l'intérêt sur les plans didactique, social, scientifique, pédagogique et psychologique.

1. Intérêts de l'étude

Sur le plan didactique

Ce travail va développer chez les apprenants : la visualisation et la compréhension spatiale ; en effet, la construction géométrique encourage les élèves à visualiser et à comprendre les relations spatiales. Duval (2005) dit d'ailleurs à cet effet que pour faire de la géométrie, il faut décomposer toute forme en une configuration d'autres unités figurales du même nombre de dimensions ou d'un nombre inférieur de dimensions.

Nous observerons également le développement des compétences techniques car en utilisant la règle et le compas, les élèves acquièrent des compétences pratiques pour réaliser des constructions géométriques précises.

La construction de la bissectrice d'un triangle incitera aussi à résoudre des problèmes mathématiques, ce qui développe la pensée logique et la créativité.

Sur le plan social

L'apprentissage de la construction de la bissectrice à l'aide de la règle et du compas et des TIC en classe de 5°, va développer :

- La collaboration et communication : car travailler sur des constructions géométriques encourage la collaboration entre pairs, favorisant ainsi la communication et le partage des connaissances.
- L'inclusion : car les activités de géométrie offrent la possibilité d'engager tous les élèves, indépendamment de leur niveau de compétence, en encourageant la participation de chacun.

Sur le plan scientifique

Sur le plan scientifique, on observera :

- La compréhension des fondements géométriques : la construction de la bissectrice permet aux élèves de saisir les concepts fondamentaux de la géométrie, tels que les angles, les droites et les relations entre eux.
- Les applications dans d'autres domaines : les compétences géométriques acquises peuvent être appliquées dans divers domaines scientifiques et techniques ultérieurs.

Sur le plan pédagogique

Nous aurons sur le plan pédagogique :

- Une approche interactive : l'utilisation de la règle et du compas engage les élèves dans une activité pratique et interactive, favorisant ainsi une meilleure compréhension des concepts géométriques.
- Une diversité des apprentissages : cette activité permet de varier les méthodes pédagogiques en combinant l'utilisation d'outils traditionnels (règle, compas) avec des ressources technologiques (logiciels de géométrie dynamique, TIC) pour répondre aux différents styles d'apprentissage des élèves.
- L'encouragement de la réflexion et de la résolution de problèmes : la construction de la bissectrice d'un triangle invite les élèves à réfléchir, à analyser et à résoudre des problèmes géométriques, stimulant ainsi leur esprit et leur capacité à trouver des solutions.
- Un développement des compétences transversales : outre les compétences mathématiques, cette activité favorise le développement des compétences transversales telles que la patience, la précision, la créativité et la capacité à suivre des instructions et à travailler méthodiquement.

Sur le plan psychologique

Ici, nous aurons comme intérêts :

- La confiance en soi : réussir à construire une bissectrice ou d'autres constructions géométriques renforce la confiance des élèves dans leurs capacités mathématiques.
- Le développement de la persévérance : la géométrie demande de la patience et de la persévérance, ce qui contribue au développement de la capacité à surmonter les défis.

2. Délimitation

Toute recherche doit être menée dans un cadre bien précis. En ce qui concerne la nôtre, elle se situe dans les domaines de l'enseignement et de l'apprentissage. Elle pose un problème d'actualité, dont les manifestations sont observées sur le terrain. Cette étude concerne l'apprentissage de la construction de la bissectrice dans un triangle à l'aide de la règle et du compas et des TIC en classe de 5°. Cette étude est faite au Cameroun, dans la région du Centre et plus précisément dans la ville de Yaoundé. Les observations seront faites au Lycée Bilingue d'Application de Yaoundé qui est dans le 4° arrondissement de la ville. Nous avons travaillé durant l'année scolaire 2024/2025.

IV. CADRE THÉORIQUE ET HYPOTHÈSES

Nous allons à présent présenter les théories sur lesquelles nous allons nous appuyer pour mener à bien notre travail. Les théories retenues pour ce travail sont : la Théorie des Situations Didactiques (TSD) de Guy Brousseau et l'approche instrumentale de Rabardel.

1. La Théorie des Situations Didactiques de Guy Brousseau

Notre choix s'est porté sur cette théorie car nous aurons à construire des situations adéquates pour favoriser l'apprentissage de la construction des bissectrices chez les élèves de 5° et cette théorie nous donne les outils adéquats pour avoir une bonne situation. Le terme situation est défini par Kuzniak comme étant l'ensemble des circonstances dans lesquelles une personne se trouve, et des relations qui l'unissent à son milieu (2004, p.19). Guy Brousseau en développant ce cadre théorique fait ressortir deux grands types de situations : la situation didactique qui est une situation dans laquelle l'intention d'enseigner est clairement définit et la situation a-didactique qui est une situation dans laquelle l'intention d'enseigner n'est pas clairement définit. Toutefois, on ne peut avoir une situation didactique sans une situation a-didactique; en effet, ce sont les moments d'a-didacticité qui font la situation didactique. La situation a-didactique comporte : la situation d'action, la situation de formulation et la situation de validation.

2. L'approche instrumentale

Développée par Pierre Rabardel, l'approche instrumentale est un cadre théorique qui se concentre sur la relation entre l'humain et l'outil (artéfact) dans une activité. Les principaux concepts de cette approche sont :

- L'artéfact : l'objet, l'outil, la technologie mis à la disposition de l'utilisateur.
- Les schèmes d'utilisation : les manières dont l'utilisateur s'approprie et utilise l'artéfact, les règles d'action qu'il développe.
- L'instrument : résultante de l'interaction entre l'artéfact et les schèmes d'utilisation, c'est l'unité fonctionnelle dans l'activité.

Rabardel nous montre dans ses travaux que les instruments ne sont pas neutres dans le processus d'acquisition des connaissances par les élèves. En fait, les savoirs ne se construisent pas chez les apprenants de la même façon, ceci dépend fortement de l'instrument utilisé et du rapport de chaque élève à cet instrument. Kant avait à cet effet montré que nos connaissances sont dépendantes des outils cognitifs que nous mettons en œuvre pour les construire (Rabardel, 1999). L'instrument est donc au centre des interactions entre le maître, l'élève et le savoir.

En effet, l'instrument est une entité mixte, qui intègre à la fois les caractéristiques de l'artéfact et les schèmes d'utilisation construits par l'utilisateur. L'artéfact est ici le dispositif matériel utilisé en situation d'apprentissage, il peut être symbolique. Avec cette définition, nous comprenons que, c'est chaque apprenant qui élabore son instrument en situation d'apprentissage, et les connaissances qu'il va acquérir vont dépendre fortement de cette élaboration. Le processus par lequel le sujet construit son instrument est appelé genèse instrumentale.

La genèse instrumentale a deux dimensions principales :

- L'instrumentation : processus par lequel l'utilisateur prend connaissance de l'artéfact, se l'approprie et l'intègre dans son activité.
- L'instrumentalisation : processus par lequel l'utilisateur transforme ses rapports avec l'artéfact pour mieux l'adapter à ses besoins et à son activité.

Ces deux processus sont étroitement liés et se déroulent de manière conjointe au fur et à mesure que l'utilisateur se familiarise avec l'artéfact et le fait évoluer. La genèse instrumentale est donc un processus dynamique, qui montre que l'utilisateur n'est pas passif face à un artéfact, mais qu'il le transforme activement pour en faire un instrument adapté à son activité (Serigado, 2022).

L'hypothèse générale de notre travail est la suivante : l'utilisation du logiciel Geogebra comme outil complémentaire à la construction manuelle des bissectrices d'un triangle avec la règle et le compas permet aux élèves de mieux comprendre les étapes de construction et les propriétés géométriques associées, facilitant ainsi la réalisation correcte des bissectrices et renforçant leur capacité à appliquer ces techniques dans des situations variées.

V. MÉTHODOLOGIE ET DEROULEMENT DU DISPOSITIF D'APPRENTISSAGE

Dans cette partie, nous allons présenter un dispositif d'apprentissage qui repose sur une approche active et expérimentale, combinant la manipulation d'outils traditionnels (règle et compas) avec l'exploration numérique via le logiciel Geogebra. L'objectif est d'amener les élèves à découvrir par euxmêmes les propriétés des bissectrices d'un triangle en mobilisant leurs connaissances et en adoptant une démarche rigoureuse. Ce dispositif repose sur une approche en quatre temps :

- Une phase de découverte
- Une exploration numérique avec Geogebra
- Une construction manuelle avec la règle et le compas
- Une phase de comparaison et d'analyse

L'étude sera réalisée auprès de dix élèves d'une classe de 5°; ils seront mis en groupe de trois et quatre pour le travail et les échanges. Ces élèves ont déjà acquis des notions de base sur les angles et les triangles, ce qui leur permet d'aborder la notion de bissectrice.

Comme matériel à utiliser, nous aurons :

- Outils classiques : règle, compas, crayon, feuille
- Outil numérique : l'application Geogebra
- Supports pédagogiques : un protocole de construction détaillant les étapes de construction d'une bissectrice avec les outils classiques et avec Geogebra; un mémento résumant quelques propriétés des bissectrices utiles.
- Des dictaphones
- Un téléphone
- Une grille d'observation

Dans le cadre de ce travail, nous n'allons présenter que les trois premières phases de notre dispositif.

1. Introduction et phase de découverte

Durant cette phase, les élèves prendront connaissance du logiciel Geogebra. Nous leur présenterons quelques fonctionnalités dont ils auront besoin pour la construction d'une bissectrice sans toutefois utiliser directement l'outil bissectrice. Cette étape est primordiale parce que les élèves n'ont aucune connaissance préalable de ce logiciel.

2. L'exploration numérique avec Geogebra

L'exploration numérique a pour objectif de faire travailler les élèves en groupe en suivant le protocole de construction qui leur a été remis et de justifier chaque étape de construction en mentionnant une propriété du memento.

• Trace un triangle avec l'outil « segment ».

- Trace un cercle de centre B passant par le point D tel que $BD < \frac{BC}{2}$ avec l'outil « cercle
- avec centre passant par le point ».
- Marque par E le point d'intersection du cercle avec le segment [BA].
- Trace un cercle de centre D et de rayon [BD] avec l'outil « compas ».
- Trace un cercle de centre E et de rayon [BD] avec l'outil « compas ».
- Marque par F le point d'intersection des deux cercles précédents.
- Trace la droite (BF) avec l'outil « ligne » et mets là en couleur rouge.
- Vérifie ton tracé en utilisant l'outil « bissectrice » et trace la bissectrice de l'angle \widehat{ABC} en couleur noire.

Nous allons mettre en annexe ce qui est attendue de chacune de ces étapes.

3. La construction manuelle avec la règle et le compas

Ici, les élèves travaillent individuellement sur papier. L'objectif est de voir si chacun d'eux est capable de construire manuellement la bissectrice d'un angle d'un triangle en utilisant uniquement la règle et le compas après la séance de travail avec le numérique.

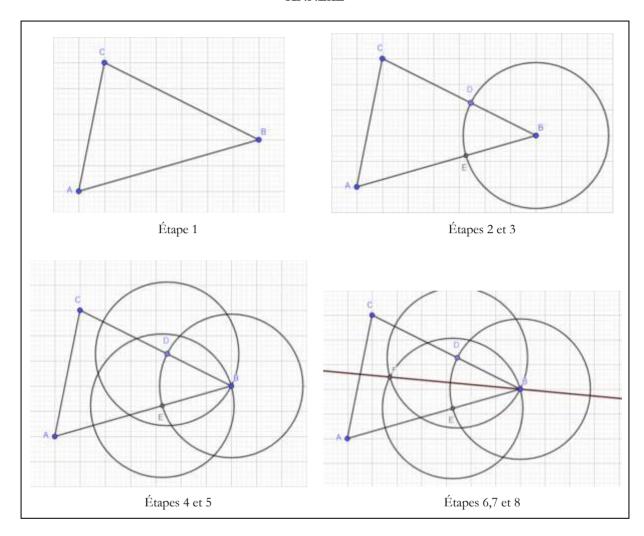
VI. CONCLUSION

L'apprentissage de la construction des bissectrices d'un triangle en classe de 5°, en utilisant la règle, le compas et le logiciel Geogebra, offre une approche pédagogique complète qui combine les méthodes traditionnelles et les outils numériques. Cette stratégie permet aux élèves de comprendre en profondeur les concepts géométriques liés aux bissectrices, tout en développant des compétences pratiques et technologiques. La maitrise des techniques de construction manuelle avec la règle et le compas est essentielle pour saisir les fondements de la géométrie euclidienne. L'intégration de Geogebra enrichit cet apprentissage en offrant une visualisation dynamique des constructions géométriques. Ainsi, l'utilisation conjointe de la règle, du compas et du logiciel Geogebra dans l'enseignement des bissectrices en classe de 5° constitue une méthode pédagogique efficace, préparant les élèves à une compréhension approfondie de la géométrie et à une utilisation judicieuse des technologies éducatives.

RÉFÉRENCES

Bennaceur, B. (2009). Apprentissage, compétences et approche par compétences en mathématiques. *Les cahiers du Crasc*, (16), 23-27.

Brousseau, G. (2011). La théorie des situations didactiques. Éducation & Didactique, 5(1), 101-104. https://doi.org/10.4000/educationdidactique.1005


Duval, R. (2005). Les conditions cognitives de l'apprentissage de la géométrie : développement de la visualisation, différenciation des raisonnements et coordination de leurs fonctionnement. *Annales de Didactiques et Sciences Cognitives*, 10, 5-53.

Kuzniak, A. (2004). La théorie des situations didactiques de Brousseau. *L'ouvert*, 110, 17-33. https://bibnum.publimath.fr/IST/IST04030.pdf

Mastafi, M. (2020). Rôles et impacts des TIC dans l'enseignement et l'apprentissage des mathématiques : perceptions des enseignants du secondaire. Formation et profession, 28(2), 60-74.

- Ourahay, M. (1991). La construction géométrique et les instruments classiques de construction. Bulletin AMQ, (mars), 21-26. https://www.amq.math.ca/wp-content/uploads/bulletin/archives/1991-1-part10.pdf
- Pressiat, A. et Combier, G. (2001). Apprentissages géométriques au début du Collège. Dans Actes du colloque inter-IREM 1^{er} cycle: « Quelles géométries au collège? Geste physique, geste virtuel, geste mental », 21-23 juin 2001. IREM de Montpellier. https://ife.ens-lyon.fr/formation-formateurs/catalogue-des-formations/formations-2005-06/apprentissages-geometriques-au-cycle-3-de-l-ecole-1/Geometrie%20college.pdf
- Rabardel, P. (1999). Qu'est-ce qu'un instrument ? Appropriation, conceptualisation, mises en situation. Les dossiers de l'ingénierie éducative, 19, 61-65. https://edunum.unige.ch/articles/rabardel_1995_quest-ce_quun_instrument.pdf
- Serigado, R. (2022). L'artefact au service de la construction de connaissances en géométrie : l'utilisation du compas dans la construction d'un quadrilatère [Mémoire de Maîtrise, Université de Genève]. Archive ouverte UNIGE. https://archive-ouverte.unige.ch/unige:163605
- Voltolini, A. (2014). Un duo d'artéfacts virtuel et matériel pour apprendre à construire un triangle à la règle et au compas. *Grand N*, (94), 25-46.

ANNEXE

